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Lecture 10 : Liquid crystals
In theprevious lecture ,

we have seen that rod-like particles can form
a phase for each particle points or average in a preferred direction.

The situation is different from spherical particles : O
whichisdescribed by just translational des
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When particle has nontrivial trivial shape:ge
=> anisotropic interactions ! dofs

Nematic : No translational order
- but orientational order along is

,
particle biaxiality ,

one axis

Biaxial rematic : No translational order
- but orientational order along two axes (phase biaxiality)

Smectic : Translational order along one dimension.
- Orientational order along one axis -

Rotator : Translational order along all three directions ,
no orientational

-

order.

Crystal : Translational symmetry and rotational symmetry are

completely broken.

Easier to visualise for uniaxial particles (e .g
. rots)

IIIIII -14 IIIIII
I/IIIIIii 111/II + - 1

IIIIII
muatic smetic

- 1x
III III

rotator .

↓
(plastic crystal crystal

(in layers
guid) Manymore LC phases : columnar

,
lexartic,

blue phases ,
cholesteric , twist-bend

rematic etc.



②
Liquid crystals are so-called mesophases : Partially ordered structures (rotational

and translational symmetry is only partly brohn) . These phases are therefore
"in between" liquids and crystals.

We have already seen howdodescribe Liquid crystals from a symmetry
breaking perspective : Order parameterStrong-stop

+-
No vectorial order parameter because of up-down symmetry : n+ -i .

Flow to interpret S? ↓
We define the positional and orientational density operator
as p(r)= )du-ui) and plu =[i].

Note that <N =Jarfag(iv)
Note in isotropic phace : pro) = const => Pri=
with m = < N>/ V-

In nematic phase : p(ru) = p(t) insmetic phase

↑ (,)
=

p (2 ,5) etc.
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=Sp-op)p(u) Define angular distribution

- (p)]e
.

4) =P

with < ...> = (d) ... )pla

hargest eigevalue of Q is S with eigenvectori.
~ . Q . n = : (S) = S .

= cosQ .

SinoGopup = (((one = (58-5)Te

= [Prose
.

E Sis theangularaverageover enas

This is because one can expand

+ (6)= SePe(cost) (leven

Se = <Pecost) =first non-trivial (i. e. angular dependent)
moment of the angular distributionn.

There are two ways how liquid crystals can form :

Sn !·

I#depapana
~

thermotropics density jump
lyotropics -
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Thermotropics are typically molecular systems ,
e.g. O

HokHEYEN Y not--
flexible planar andstiff ob main chain
tail

~ 20 polymerC

often no solvent& # side chain

Cone component systems) polymer LG .

hyosopics : concentration is control variable
mixtures (colloidal particles + solvent)

1Exampes: o I D
(carbrigidrodsabes,

seriflexible ribbons needles.
fibers

TMV) Ifd virus,
DNA N205 , p-sheets)

<Lys
Cellulose)

worm-like
micelles)

Onsager (1949) showed that a system of identical hand rods can

undergo an isotropic tonematic phase . In his model he assumed

that (i) each rod with a specific orientation is modeled as

a separate chemical species-
second

(ii) Onsager used thervirial approximation -

(iii) Minimised the resulting free energy-
Although not known at the type , Onsager used implicitly a density
functional theory 1 Generalisation to g(v)

&[p] = Ftp)+ Stifdp(r) [Vext (i) -u] -
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With BFIp) =(difdp(,) [logp(ru" - 1]

-Safdufdfdf(i)p(u)p(ii)
with Mayer function f(iii) = e-Pim) - 1 .

net's focus only on possibility of a nematic phase prit) = p(i)
↑(i) has normalisation:n= fanplu)
Furthermore, we are interested in bulk : Vext =or

=> BGp()[logpl-B]+dufd'Elpa
Elu) = -Sarzf( inu) in ==

,
-E

excluded volume between two rods-

So we find the Euler-Lagrange equation.

logp(1 +SaE(, ')p() =Bu.

For hard sphero cylinders : Onsager found : OCLD)
x OLLDY-

Eluu) = 2L
&

D kin gl +000./Yemisphe0 = /LDr + +/D3 Cockume of single
Spherocylinder)

and cosy
= vin

↳
In the limit Ep + co (needle limit) we can neglect second term

in Eluu)
.
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Now writing that p(u) = p(t)
emp(t)13 + 222DJdt'sinG'k(0 ,01)g(t) = Bi mo numerical

-

⑪ &DELYL
ger -

At low n

this termdominates ploLD : ePM . becomes of
similar order

as first term !
So we have a phase transition :

At low density : system maximises its orientational entropy & translational
entropy-

At high density : Net entropy increase by alignment : although
orientational entropy is lower ,

center-of-mass

P(t) entropy increases

#increasinit ·

(Note p(t) = p( - f)

!
How good is the second virial approximation

?

Bp =

p + B-g +Bzp3 = p(1 + Byp++ ... )
So good when BalB

·

Spheres : BLOBO
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For rods Onsager showed that : Blog( to ArLD
In the needle limit Onsager theory is exact
Why is it called liquid crystal ?

Liquid : no long range order.

-> static deformation leads to flow .

Crystal : Long-range positional order +> static deformation leads to
elastic response -

Liquid crystal : Liquid-like short-range positional orders but long
range

orientational order- certain types of

deformations lead to elastic response , some
to flow -

Example :

->

T orientational
order unaffectedE-fou .

-

E

↓ splay - ↑

: #
perturbation El hand deformation
of director field elastic constant Ky

=> elastic response
twist deformation

elasticonith , elastic constant Ky .



⑨
Deformed state leads to higher free energy. This is captured in the

Frank elastic free energy FE :

FeIn]=Sa[k ,W+ Kn( · (Exll+ KylixsR] -

Note that for uniform state F [m] .
.

=Safel

Remarks
(i) Fetn] derivable from LdG free energy ! Add gradient derms
that are symmetry allowed ,

e.

g -Qy & QBy etc.

Then use uniaxial approximation-> Ki = ki (s)1
(ii) Various approximations ,

e .

g.: one-constant approximation . (K =Ky =0)
Or equal-constant approximation K ,

= kz= Ky = K
.

=> fe = Ek[(vin1 + (x)2)
.

-da .

(iii) Kiwlo-N
CestimatelyKit)-b

Consequences Topological defects : high-energy excited structures
in uniforms

Radial hedgehog defect ground state.

# Je ny => diverges in the center.

=> core of topological defect melts

-> defect lines can form
a in lugnit
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Interactionwith surfaces
preference to align a mesoym
close to particle surface.

U = Us + Wpsin2f + Wa sin2

&#baris
a CRapini-Paponlar anchoring)
surface free energy.

-----

-
#II 11

. /
planar anchoring homeotropic

Wp > o
anchoring .

Wp(o

&teraction with external fields (magnetic electric)
E-> E dielectric tensor (similar for magnetic properties)

TX+ con be
E = E + En ·

De = /-E1 . 2 positive or

negative
Dielectric anisotropy results in an additional free energy

contribution

Je =
-EEE)

↑ external electric field.

In other words4E30 : /E lowers free energy.
420 : nLE lowers free energy.

Suppose we have a positive dielectric an isotropy.
Considergeometry: perpendical easy

axes ,

D I /Twisted rematic well
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ta Frederiks transition I=I Alignment in direction of E

for ESEVID)
~ This is a mechanism exploited in liquid-crystal displays I

(LCDs)

I


